

Tarefa 1 – O caminho até a Strike 300

Conteúdo: Razão e proporção

Fonte: PASCOSKI, J. P.; PAULICHEN, T. Estágio de regência: plano de aula. Universidade

Estadual do Paraná – Campus União da Vitória. 2019.

TAREFA 1 – O CAMINHO ATÉ A STRIKE 300

Os amigos, Melissa, Carlos, Juliana e Bernardo decidem ir jogar boliche na "STRIKE 300" que fica próximo à casa de Melissa. No entanto, Carlos, Juliana e Bernardo não moram tão próximo dessa casa de jogos quanto Melissa, e levam tempos diferentes para chegar até o lugar. Para que todos cheguem no mesmo horário, os quatro amigos fizeram uma tabela com a distância e o tempo que cada um leva para chegar na STRIKE 300 e decidir que horas cada um deve sair da sua casa para se encontrarem às 20:00 horas na pista de boliche.

	Distância de casa até a	Tempo para percorrer	Horário que deve sair
	Strike 300 (km)	a distância (min)	de casa para chegar às
			20:00 (hrs)
Carlos	35	40	19:20
Juliana	15	20	19:40
Melissa	1	15	19:45
Bernardo	30	40	19:20

- 1) De acordo com as informações acima, se todos os amigos saíssem de casa no mesmo horário:
 - a) Qual dos amigos chegaria primeiro? Por quê?
 - b) Qual dos amigos chegaria por último? Por quê?
- 2) Quando estavam jogando boliche, Juliana lembrou da tabela que eles haviam feito e perguntou quem dos quatro era o mais rápido, eles começaram a pensar e desenharam até um pódio para definir os três primeiros lugares.
 - a) Quem ficou em primeiro lugar? Por quê?
 - b) E em segundo lugar? Por quê?
 - c) E em terceiro lugar? Por quê?
 - d) Alguém ficou de fora do pódio? Por quê?
- 3) Levando em consideração os dados da tabela, e pensando que os amigos estariam no mesmo local:
 - a) Se Juliana e Bernardo apostassem uma corrida qual dos dois venceria? Por quê?
 - b) Se Carlos e Melissa apostassem uma corrida qual venceria? Eles podem chegar juntos na linha de chegada? Por quê?

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

PLANO DE AULA

Duração:

3h/aula

Conteúdo:

Razão e proporção

Ano de escolaridade:

7° ano do Ensino Fundamental

Objetivos:

- Compreender o conceito de razão;
- Compreender o conceito de proporção;
- Reconhecer a diferença existente entre grandeza e unidade de medida;
- Compreender e reconhecer grandezas proporcionais e grandezas não proporcionais.

Recursos:

Projetor Multimídia, celular, notebook (apresentação das resoluções), tarefas impressas, lousa, giz, folhas de papel, canetas, lápis e borracha.

Metodologia

Para a efetivação das aulas, será utilizada como perspectiva metodológica o ensino exploratório de Matemática (EEM). Tal perspectiva contrapõe-se ao modelo de transmissão de conhecimento/informação, associado a práticas expositivas e diretivas (PONTE, 2005), admitindo como dimensões fundamentais o *inquiry*, a colaboração, a comunicação e a reflexão (CYRINO; OLIVEIRA, 2016), em que a aprendizagem decorre do trabalho que os alunos realizam a partir do engajamento em tarefas desafiadoras, para as quais não possuem um método imediato de resolução (CANAVARRO, 2011).

Essa abordagem coloca os alunos no centro do processo didático, e através de ações consonantes, o professor conduz os alunos a expressarem suas ideias e (in)compreensões, instiga ao questionamento de outras ideias, e auxilia na reflexão sobre as estratégias de

Financiamento:

Conselho Nacional de Desenvolvimento Científico e

Tecnológico - CNPq

resolução utilizadas, em meio a uma dimensão colaborativa de aprendizagem (ESTEVAM; CYRINO; OLIVEIRA, 2017).

"O ensino exploratório da Matemática não advoga que os alunos descobrem sozinhos as ideias matemáticas que devem aprender, nem tão pouco que inventam conceitos e procedimentos ou lhes adivinham os nomes" (CANAVARRO, 2011), mas que "[...]aprendem a partir do trabalho sério que realizam com tarefas valiosas que fazem emergir a necessidade ou vantagem das ideias matemáticas que são sistematizadas em discussão coletiva." (CANAVARRO, 2011). Desta maneira, os alunos tem a possibilidade de ver surgir o significado dos conhecimentos e procedimentos que eles mesmos estão desenvolvendo (CANAVARRO, 2011).

Nesse âmbito, o professor surge como mediador, ou assim como determinado por Stein et al. (2008), "aquele que orquestra". Suas ações determinam o processo de interação das ideias, de modo a tornar o ambiente mais produtivo, em aulas que emergem, simultaneamente, a lógica individual (nas intervenções dos alunos) e a lógica coletiva (na negociação de significados partilhados) (OLIVEIRA; MENEZES; CANAVARRO, 2013).

Uma aula com perspectiva exploratória geralmente é estruturada em três ou quatro fases, as quais organizam e orientam ações do professor, tendo em conta a gestão da aula e as aprendizagens dos alunos (OLIVEIRA; MENEZES; CANAVARRO, 2013). Stein et al. (2008) propõem um modelo em três fases: "lançamento" da tarefa, "exploração" pelos alunos, e "discussão e sintetização". No Brasil, tem-se admitido o modelo em quadro fases, o qual estrutura-se da seguinte maneira:

i) proposição e apresentação da tarefa, apoiada na prática de propor a tarefa aos alunos; ii) desenvolvimento da tarefa, associada à prática de monitorar a resolução dos alunos, apoiá-los e identificar resoluções interessantes para discussão com toda a turma; iii) discussão coletiva da tarefa, relacionada à apresentação das resoluções selecionadas, contraposição de diferentes ideias e estratégias, bem como discussão de suas potencialidades e limitações; e iv) sistematização das aprendizagens, com a formalização das ideias discutidas no decorrer da aula, aproximando-as daquelas prescritas nos currículos (ESTEVAM; CYRINO; OLIVEIRA, 2017, p. 151).

Destarte, as aulas acontecerão pautadas na resolução das tarefas propostas e nas fases destacadas anteriormente, onde os alunos terão auxilio dos professores estagiários durante a resolução das tarefas, sendo as intervenções realizadas de maneira a não interromper as ideias que partem dos próprios alunos. Tais resoluções serão discutidas e sistematizadas a partir das resoluções obtidas nos grupos, levando em consideração os objetivos iniciais. Durante todas as fases da aula, será incentivada a participação dos alunos na construção do conhecimento e para que seja possível um ambiente produtivo e colaborativo, e em seguida

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

serão entregues listas com exercícios sobre o conteúdo que fora trabalhado na aula respectiva de modo que os conhecimentos já sistematizados possam ser fixados.

As definições e conceitos que serão trabalhados durante as aulas estão presentes no livro Fundamentos de Matemática elementar 11 (IEZZI; HAZZAN; DEGENSZAJN, 2011).

DESENVOLVIMENTO

Aula 02

No início desta aula será entregue de forma impressa aos alunos a tarefa 1 após isso ocorrerá a fase de proposição da tarefa, onde será realizada a leitura da tarefa juntamente com os alunos para uma melhor compreensão e para que seja possível o esclarecimento de possíveis dúvidas. Pretende-se que até aí se tenham passado 10 minutos – 15 minutos para então seguir para a fase de desenvolvimento da tarefa.

A tarefa "O caminho até a STRIKE 300" tem a intencionalidade de trabalhar com conceitos de razão, proporção, grandezas e unidades de medida. O "item 1" da tarefa possui a intencionalidade de olhar para as unidades de medida (minutos) e perceber a relação existente entre esses minutos e a hora que cada um iria chegar, para então determinar o que leva "menos tempo" de trajeto e o que leva "mais tempo" de trajeto. Dessa forma, os alunos estarão lidando com unidades de medidas do tempo. A distinção entre grandezas e unidades de medida será abordada nas fases de discussão coletiva e de sistematização da tarefa.

O "item 2a e 2c" da tarefa pede implicitamente que os alunos encontrem a razão existente entre as velocidades e a quilometragem que cada um precisa fazer para chegar até o boliche, para que possam determinar quem dos amigos é o mais rápido e quem é o menos rápido. Já o "item 2b" sugere a ideia de proporção, onde os alunos podem estabelecer o comparativo entre a velocidade de Juliana e de Bernardo chegado à conclusão que ambas são congruentes, tendo em vista que as razões estabelecidas no enunciado são proporcionais, e que, portanto, ocupam ao mesmo tempo o 2° lugar do pódio. O "item 2d" tem por objetivo que os alunos escrevam o modo como acreditam que acontece a classificação das velocidades, para verificar se eles compreendem que mesmo sendo expresso por valores distintos, a proporção existente entre as unidades de medida irá garantir que Juliana e Bernardo estejam a mesma velocidade, este item tem a intenção de reforçar o significado da proporção, e de dar indícios do que são grandezas proporcionais.

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

Saber quem venceria uma corrida no "item 3a e 3b" auxiliará na compreensão de proporcional e não proporcional, em que os alunos precisarão explicar o porquê de Juliana e Bernardo empatarem e por que Melissa e Carlos não podem empatar (se chegarem a essa resolução), trazendo, desse modo, conceitos de proporcionalidade e de não proporcional, os quais serão explorados na fase de discussão coletiva e de sistematização das aprendizagens.

Durante a fase de desenvolvimento da tarefa, os alunos (em trios ou duplas) irão trabalhar na tarefa até o final da aula, deste modo, os alunos terão um tempo de 30 minutos – 35 minutos para iniciar as resoluções. Os professores estagiários durante esse período auxiliarão os alunos nas possíveis dúvidas sem interferir na linha de pensamento dos grupos, incentivando-os a prosseguir o trabalho e a realizar as anotações de tudo que estão pensando/fazendo. As resoluções da tarefa 1 estão abaixo.

Resolução da Tarefa 1 – O caminho até a Strike 300

Os amigos, Melissa, Carlos, Juliana e Bernardo decidem ir jogar boliche na "STRIKE 300" que fica próximo à casa de Melissa. No entanto, Carlos, Juliana e Bernardo não moram tão próximo dessa casa de jogos quanto Melissa, e levam tempos diferentes para chegar até o lugar. Para que todos cheguem no mesmo horário, os quatro amigos fizeram uma tabela com a distância e o tempo que cada um leva para chegar na STRIKE 300 e decidir que horas cada um deve sair da sua casa para se encontrarem às 20:00 horas na pista de boliche.

	Distância de casa até a Strike 300 (km)	Tempo para percorrer a distância (min)	Horário que deve sair de casa para chegar às 20:00 (hrs)
Carlos	35	40	19:20
Juliana	15	20	19:40
Melissa	1	15	19:45
Bernardo	30	40	19:20

- 1) De acordo com as informações acima, se todos os amigos saíssem de casa no mesmo horário:
- a) Qual dos amigos chegaria primeiro? Por quê? Melissa, pois dentre todos os amigos, ela é a que leva menos tempo para chegar até a STRIKE 300, apenas 15 minutos, é possível chegar a essa conclusão olhando a terceira coluna da tabela.
 - b) Qual dos amigos chegaria por último? Por quê?

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

Carlos e Bernardo, pois ambos demoram o mesmo e maior tempo para chegar até a STRIKE 300, 40 minutos, é possível chegar a essa conclusão olhando a terceira coluna da tabela.

- 2) Quando estavam jogando boliche, Juliana lembrou da tabela que eles haviam feito e perguntou quem dos quatro era o mais rápido, eles começaram a pensar e desenharam até um pódio para definir os três primeiros lugares.
- a) Quem ficou em primeiro lugar? Por quê? Carlos, pois ele é o que percorreu mais quilômetros em menos tempo. Ou seja, ele estava a aproximadamente 52 km/h, enquanto os outros estavam a velocidades menores, é possível descobrir a velocidade de Carlos através da razão tempo e quilometragem.
- b) E em segundo lugar? Por quê?

 Juliana e Bernardo ocupam o segundo lugar ao mesmo tempo, pois ambos estão a mesma velocidade, aproximadamente 45 km/h, é possível descobrir essa velocidade através da razão tempo e quilometragem. Isso ocorre porque as razões de quilometragem e tempo são proporcionais.
- c) E em terceiro lugar? Por quê? Melissa ficaria em terceiro lugar, pois ela estaria a 4 km/h por conta da razão entre a quilometragem que ela precisa fazer e o tempo que leva para isso.
- d) Alguém ficou de fora do pódio? Por quê? Ninguém ficou de fora do pódio, pois Juliana e Bernardo acabaram ocupando uma mesma colocação, pois estavam com a mesma velocidade.
- 3) Levando em consideração os dados da tabela, e pensando que os amigos estariam no mesmo local:
- a) Se Juliana e Bernardo apostassem uma corrida qual dos dois venceria? Por quê? Nenhum, teríamos um empate pois ambos estão a mesma velocidade. Isso acontece por conta da proporcionalidade existente entre as razões de tempo e quilometragem de Juliana e Bernardo.
 - b) Se Carlos e Melissa apostassem uma corrida qual venceria? Eles podem chegar juntos na linha de chegada? Por quê?

Carlos venceria, pois ele é mais rápido. Não poderia haver um empate, isso é justificado porque não existe proporcionalidade entre as razões de tempo e quilometragem de Melissa e Carlos, e é por esse motivo também que ambos não têm a mesma velocidade.

Financiamento:
Conselho Nacional de Desenvolvimento Científico e
Tecnológico - CNPq

Sabendo que podem surgir questionamentos e dificuldades por parte dos alunos em relação a tarefa e "ao que fazer", foi elaborado um quadro (Quadro 1) que pode apoiar as ações dos professores em algumas situações.

Questão	Atividade dos alunos	Atividade do professor	
	 Os alunos não conseguem entender como definir quem chega primeiro e quem chega por último. 	 Pergunta-se como sabe que alguém chegou no horário ou atrasado em alguma ocasião. 	
1	 Os alunos souberam responder quem chega por primeiro e quem chega por último, mas não sabem explicar o porquê. 	 Pergunta-se o que eles pensaram para chegar nessa resposta, que dados eles olharam para saber quem chega primeiro e quem chega por último. 	
	 Os alunos não sabem se Carlos ou Bernardo chegam por último. 	Pergunta-se o que foi olhado para decidi quem chega por último, é possível que ocorra um empate? Por quê?	
2	 Os alunos não conseguem saber qual dos amigos é o mais rápido. 	 Perguntar como saber que alguém é mais rápido que outra pessoa. 	
	 Os alunos confundem as colocações por conta dos minutos que cada um levará para chegar. 	 Pergunta-se quais dados foram analisados para definir quem é o mais rápido. 	
	 Os alunos não conseguem perceber a proporção existente entre as velocidades de Juliana e Bernardo. 	Perguntar como ficaram as colocações, é possível que Juliana e Bernardo estejam a mesma velocidade? Por quê?	
	 Os alunos não conseguem dizer se alguém fica de fora do pódio. 	 Perguntar quantas colocações existem no pódio e como ficou a 	

Financiamento:
Conselho Nacional de Desenvolvimento Científico e
Tecnológico - CNPq

		ordem dos mais rápidos para os mais
		lentos dos amigos.
	 Os alunos conseguem descrever as colocações do pódio. 	 Perguntar porque o pódio ficou com aquelas colocações.
2	 Os alunos conseguem dizer que Juliana e Bernardo ficam ambos em segundo lugar. 	 Perguntar porque eles ficam juntos em segundo lugar.
	 Os alunos sabem que Juliana e Bernardo ficam em mesma colocação, mas não percebem a proporção existente entre as velocidades. 	Perguntar como eles sabem que ambos ficam na mesma colocação, e o que os alunos olharam para descobrir isso.
	 Os alunos não conseguem dizer quem venceria. 	 Perguntar como sabemos quem ganha quando se aposta uma corrida.
	 Os alunos percebem que Juliana e Bernardo empatariam. 	Perguntar porque isso acontece.
	 Os alunos não conseguem dizer que Juliana e Bernardo empatariam. 	Perguntar quem ganharia e porquê.
က	 Os alunos dizem que Carlos e Melissa podem empatar. 	 Perguntar como chegaram a essa resolução.
	 Os alunos conseguem dizer que Carlos ganharia de Melissa. 	Perguntar porque, e se eles poderiam empatar.
	 Os alunos percebem a relação de proporção das velocidades de Juliana e Bernardo. 	Perguntar como chegaram a essa relação, como sabemos que alguém poderia empatar?

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

Carlos e Melissa não podem empatar. m

Os alunos não percebem o porquê Carlos e Melissa não podem empatar.

Os alunos percebem o porquê

- Perguntar o porquê e o que seria preciso para que eles empatassem.
- Perguntar como ficou a colocação no pódio da questão anterior e porque ficou daquela maneira.

Quadro 1 – Quadro de ações tarefa 1 Fonte: Os autores.

Ao final da aula os alunos entregarão as tarefas juntamente com os relatórios escritos, os quais serão entregues para dar continuidade na próxima aula.

Aula 03

Os professores estagiários entregarão os relatórios e as tarefas que foram iniciadas na aula anterior. O início dessa aula será destinado a continuidade do desenvolvimento da tarefa 1. O tempo previsto para a finalização das resoluções é de 15 minutos - 20 minutos.

Em seguida serão selecionados alguns grupos para a realização da discussão coletiva, as seleções irão ocorrer com base nas resoluções que forem obtidas. Pretende-se selecionar as resoluções da seguinte maneira: para a questão 1, será selecionado apenas um grupo para discutir os itens "a" e "b" acaso as respostas forem padrão. Caso contrário, se muitos grupos resolverem de forma não esperada, serão selecionados dois grupos (uma resolução não congruente com a resposta esperada e outra com a resolução correta), para que a partir daí seja feita a discussão.

Para a seleção de grupos na questão 2, buscaremos resoluções em que os alunos irão olhar apenas uma das colunas para responder as questões, resoluções que relacionam as colunas por meios lógicos, e resoluções que relacionam as colunas com a velocidade (implícita ou explicitamente).

A questão 3, será discutida por meio de resoluções que utilizaram a questão 2 para responder, por resoluções que utilizaram raciocínios lógicos, e resoluções que utilizam princípios de proporcionalidade e não proporcionalidade.

Os alunos irão apresentar as resoluções de seus respectivos grupos e contrapor ideias com as resoluções dos demais grupos, espera-se que até o fim da discussão coletiva tenha se passado 20 minutos - 25 minutos, então a aula será encerrada e sistematização das aprendizagens dessa tarefa se realizará na aula seguinte.

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

Aula 04

A aula terá início com a sistematização da tarefa 1, na qual serão formalizados alguns conceitos (Quadro 2), sendo esta formalização e estes conceitos interligados com as resoluções discutidas anteriormente. Nesta fase, o professor deixa claro a intencionalidade da tarefa, a diferença entre grandezas e unidades de medida, o que é algo proporcional e o que não é, e conceitua tais tópicos.

Sistematização Tarefa 1

Neste momento o professor retoma as questões debatidas com os alunos na fase das discussões.

O professor deve chamar a atenção dos alunos em relação ao que foi utilizado para determinar quem dos amigos chegaria primeiro. Por que Melissa chegaria primeiro? Por que Carlos e Bernardo chegariam por último? Como eu sei disso? Após isso, deve ser explicitado que para responder tais questões era necessário definir o tempo que cada um levou, ou seja, foi preciso medir o tempo, e como isso foi feito? Existem outras formas de medir o tempo? E se não estivéssemos falando de tempo, se fosse massa? Se fosse comprimento? ... E se fosse velocidade? Como eu sei que Carlos é o mais rápido dos quatro? E como eu sei que Melissa é a mais lenta? Nesse momento o professor deve deixar explícito que a razão é a relação entre duas grandezas. Quais são as grandezas que determinam a velocidade? E por que Juliana e Bernardo ficam juntos no pódio? Qual a relação entre a razão que determina a velocidade de Juliana e a razão que determina a velocidade de Bernardo? É a mesma?

Nesse momento, o professor deve explicitar que a relação entre as duas razões apresentadas trata-se de uma proporção. É por isso que Juliana e Bernardo empatam na questão 3? Mas e por que Melissa e Carlos não podem empatar? Existe alguma relação entre as razões de Juliana e Carlos? Por que não há? Após isso deve se fechar a sistematização com a diferença entre proporcional e não proporcional.

Quadro 2 – Quadro de sistematização da tarefa 1 Fonte: Os autores.

A sistematização realizada será entregue ao final da aula de maneira impressa. Estarão presentes nela, os conceitos e as ideias apresentadas, para que os alunos anexem em seus cadernos. Espera-se concluir a sistematização da tarefa 1 entre 20 minutos – 25 minutos.

Referências

Financiamento:
Conselho Nacional de Desenvolvimento Científico e
Tecnológico - CNPq

CANAVARRO, A. P. Ensino exploratório da Matemática: Práticas e desafios. *Educação e Matemática*, v. 115, p. 11-17, 2011.

CYRINO, M. C. C. T.; OLIVEIRA, H. M. Ensino exploratório e casos multimídia na formação de professores que ensinam matemática. In: CYRINO, M. C. C. T. (Ed.). *Recurso multimídia para a formação de professores que ensinam matemática*: elaboração e perspectivas. Londrina: EDUEL, 2016. p. 19-32.

ESTEVAM, E. J. G.; CYRINO, M. C. C. T.; OLIVEIRA, H. M. Análise de vídeos de aula na promoção de reflexões sobre o ensino exploratório de Estatística em uma comunidade de professores. *Quadrante*, v. 26, n. 1, p.145-169, 2017.

IEZZI, G.; HAZZAN, S; DEGENSZAJN, D. *Fundamentos de Matemática Elementar*. 1. Atual Editora, 2011.

OLIVEIRA, H.; MENEZES, L.; CANAVARRO, A. P. Conceptualizando o ensino exploratório da Matemática: contributos da prática de uma professora do 3.o ciclo para a elaboração de um quadro de referência. *Quadrante*, n. 22, v. 2, p. 19-53, 2013.

PONTE, J. P. Gestão Curricular em matemática. In: GTI (Ed.). *O professor e o desenvolvimento curricular*. Lisboa: Associação de Professores de Matemática, 2005. p. 11-34.

STEIN, M. K.; ENGLE, R. A.; SMITH, M. S.; HUGHES, E. K. Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. *Mathematical Thinking and Learning*, v. 10, n. 4, p. 313-340, 2008.